Is the Schwabe Organ a Retained Larval Eye? Anatomical and Behavioural Studies of a Novel Sense Organ in Adult Leptochiton asellus (Mollusca, Polyplacophora) Indicate Links to Larval Photoreceptors

نویسندگان

  • Lauren H. Sumner-Rooney
  • Julia D. Sigwart
  • Joseph Clifton Dickens
چکیده

The discovery of a sensory organ, the Schwabe organ, was recently reported as a unifying feature of chitons in the order Lepidopleurida. It is a patch of pigmented tissue located on the roof of the pallial cavity, beneath the velum on either side of the mouth. The epithelium is densely innervated and contains two types of potential sensory cells. As the function of the Schwabe organ remains unknown, we have taken a cross-disciplinary approach, using anatomical, histological and behavioural techniques to understand it. In general, the pigmentation that characterises this sensory structure gradually fades after death; however, one particular concentrated pigment dot persists. This dot is positionally homologous to the larval eye in chiton trochophores, found in the same neuroanatomical location, and furthermore the metamorphic migration of the larval eye is ventral in species known to possess Schwabe organs. Here we report the presence of a discrete subsurface epithelial structure in the region of the Schwabe organ in Leptochiton asellus that histologically resembles the chiton larval eye. Behavioural experiments demonstrate that Leptochiton asellus with intact Schwabe organs actively avoid an upwelling light source, while Leptochiton asellus with surgically ablated Schwabe organs and a control species lacking the organ (members of the other extant order, Chitonida) do not (Kruskal-Wallis, H = 24.82, df = 3, p < 0.0001). We propose that the Schwabe organ represents the adult expression of the chiton larval eye, being retained and elaborated in adult lepidopleurans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fate mapping of Drosophila embryonic mitotic domain 20 reveals that the larval visual system is derived from a subdomain of a few cells.

In an attempt to study the fates of cells in the dorsal head region of Drosophila embryos at gastrulation, we used the photoactivated gene expression system to mark small numbers of cells in selected mitotic domains. We found that mitotic domain 20, which is a cluster of approximately 30 cells on the dorsal posterior surface, gives rise to various ectodermal cell types in the head, including do...

متن کامل

Integration of complex larval chemosensory organs into the adult nervous system of Drosophila.

The sense organs of adult Drosophila, and holometabolous insects in general, derive essentially from imaginal discs and hence are adult specific. Experimental evidence presented here, however, suggests a different developmental design for the three largely gustatory sense organs located along the pharynx. In a comprehensive cellular analysis, we show that the posteriormost of the three organs d...

متن کامل

Larval nervous systems: true larval and precocious adult.

The apical organ of ciliated larvae of cnidarians and bilaterians is a true larval organ that disappears before or at metamorphosis. It appears to be sensory, probably involved in metamorphosis, but knowledge is scant. The ciliated protostome larvae show ganglia/nerve cords that are retained as the adult central nervous system (CNS). Two structures can be recognized, viz. a pair of cerebral gan...

متن کامل

Ontogeny of the eye of Caspian kutum (Rutilus frisii kutum) from prehatch to final larval stage

The present study examines the developmental stages of the eye retina in Caspian kutum during the pre-hatch stage to end of the larval stage. Fertilized eggs of Caspian kutum were obtained from Shahid Ansari Center for Reproduction of teleost fish (Guilan province, Iran). Sampling was done for one month until the larval stage completed and the yolk sac completely depleted. Samples were studied ...

متن کامل

Larval optic nerve and adult extra-retinal photoreceptors sequentially associate with clock neurons during Drosophila brain development.

The visual system is one of the input pathways for light into the circadian clock of the Drosophila brain. In particular, extra-retinal visual structures have been proposed to play a role in both larval and adult circadian photoreception. We have analyzed the interactions between extra-retinal structures of the visual system and the clock neurons during brain development. We first show that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015